
Universite بن طفيل bn Tofail

École Nationale des Sciences Appliquées Classes Préparatoires intégrées Semestre 4 A-U: 2020 / 2021

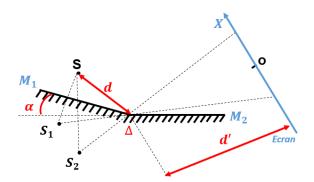
Travaux dirigés d'optique physique : Série 2

Exercice 1:

Considérons le montage des trous de Young ci-dessous. On associe trois axes \overrightarrow{SX} , \overrightarrow{OZ} et $\overrightarrow{O'Y}$ orientés vers le haut et perpendiculaires à l'axe $\overrightarrow{R'R}$ du système et contenus dans le plan déterminé par $\overrightarrow{R'R}$ et $\overrightarrow{S_1S_2}$.

- 1- Retrouver la relation qui donne l'interfrange i_0 dans le plan d'observation (E).
- 2- Si l'on déplace S parallèlement à $\overrightarrow{R'R}$ selon le demi axe $\overrightarrow{OR'}$, le phénomène observé sur l'écran est-il modifié?
- 3- La source S est déplacé de x, perpendiculairement à $\overrightarrow{R'R}$ selon \overrightarrow{SX} . Trouver la nouvelle différence de marche. Qu'observe-t-on sur l'écran (E)?
- 4- On remet S à sa place et on déplace S_1 et S_2 de z perpendiculairement à $\overrightarrow{R'R}$ selon \overrightarrow{OZ} . Trouver la nouvelle différence de marche. Qu'observe-t-on sur l'écran (E)?
- 5- Le montage reprend sa position initiale. On place devant la source S_1 (côté écran) et perpendiculairement à la direction $\overrightarrow{R'R}$, une lame à faces parallèles d'indice n et d'épaisseur e. Déterminer la nouvelle différence de marche en M et la position de la frange centrale?
- 6- Le montage est plongé maintenant dans l'eau d'indice n=1,33. Donner la nouvelle expression de l'interfrange i et la comparer à i_0 .

Exercice 2:


On considère une lentille convergente L de distance focale image $f'=0,5\,m$; de rayon d'ouverture $h=4\,cm$ et de centre O. Elle est éclairée par une source lumineuse S monochromatique située sur son axe Oy, telle que $\overline{OS}=p=-1\,m$. Ayant coupé L suivant l'un de ses diamètres en deux parties égales L_1 et L_2 , on translate celles-ci perpendiculairement à Oy de façon que L_1 et L_2 soient symétriques l'une de l'autre par rapport à O et distantes de $\varepsilon=1\,mm$.

- 1- Calculer $\overline{OS'} = p'$.
- 2- Calculer la distance entre les sources cohérentes secondaires S_1 et S_2 que le système donne de la source S principale.

- 3- Déterminer la position de l'écran à partir de laquelle on observe le phénomène d'interférences.
- 4- L'écran d'observation (E) est placé à la distance $d'=1,5\ m$ des demi lentilles. Calculer l'interfrange, la largeur du champ d'interférence et le nombre de franges brillantes observées.

Exercice 3:

On considère le dispositif interférentiel des miroirs de Fresnel constitué de deux miroirs plans M_1 et M_2 dont une arrête commune Δ et font un angle dont le supplément est $\alpha=3,5\ 10^{-3}$ rd. Le dispositif est placé dans l'air d'indice $n_0=1$ et éclairé par une source S ponctuelle monochromatique de longueur d'onde λ_0 inconnue. La source S est située à une distance $d=50\ cm$ de l'arrête Δ .

On observe le phénomène d'interférence sur un écran E perpendiculaire à la direction moyenne des rayons réfléchis placé à une distance d'=300~cm de l'arrête commune Δ .

- 1- La source S émet une lumière monochromatique de longueur d'onde λ_0 .
 - a) Dessiner la zone d'interférence et décrire brièvement ce qu'on observe sur l'écran *E*.
 - b) Donner l'expression de l'interfrange i en fonction de λ_0 , d, d' et α .
 - c) Sachant que la distance entre la frange centrale et la troisième frange sombre est $X_{3S} = 1,5 \ mm$, calculer la valeur de λ_0 .
 - d) Calculer la largeur L du champ d'interférence ainsi que le nombre N_0 des franges brillantes observées.
- 2- On remplace maintenant la source S monochromatique par une source S' émettant deux radiations voisines $\lambda_1=0,486~\mu m$ et $\lambda_2=0,434~\mu m$.
 - a) Montrer que l'éclairement en un point du champ d'interférence est :

$$I_0 = 4I_0 \left(1 + V\cos(\frac{2\pi\delta}{\lambda_m}) \right)$$

où λ_m est la longueur d'onde moyenne des deux radiations et V le facteur de visibilité que l'on déterminera.

- b) Comment varie *V* dans le champ d'interférence.
- c) Quel est alors l'aspect du champ d'interférence sur l'écran d'observation (E).
- 3- On enlève maintenant la source S' et on met à sa place la source S'' émettant une lumière blanche et on suppose l'écran d'observation E est percé d'une fente fine parallèle aux franges à la distance xp=3 mm de la frange centrale. On reçoit dans un spectroscope la lumière qui passe par cette fente. Déterminer les longueurs d'ondes des radiations qui manquent (cannelures), à cette distance, dans le spectre des couleurs observées entre 0,4 μm et 0,75 μm